Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Abstract We study heterogeneously interacting diffusive particle systems with mean-field-type interaction characterized by an underlying graphon and their finite particle approximations. Under suitable conditions, we obtain exponential concentration estimates over a finite time horizon for both 1- and 2-Wasserstein distances between the empirical measures of the finite particle systems and the averaged law of the graphon system.more » « lessFree, publicly-accessible full text available December 1, 2025
-
In this paper, we develop the theory of functional generation of portfolios in an equity market with changing dimension. By introducing dimensional jumps in the market, as well as jumps in stock capitalization between the dimensional jumps, we construct different types of self‐financing stock portfolios (additive, multiplicative, and rank‐based) in a very general setting. Our study explains how a dimensional change caused by a listing or delisting event of a stock, and unexpected shocks in the market, affect portfolio return. We also provide empirical analyses of some classical portfolios, quantifying the impact of dimensional change in portfolio performance relative to the market.more » « less
-
Abstract This paper studies an equity market of stochastic dimension, where the number of assets fluctuates over time. In such a market, we develop the fundamental theorem of asset pricing, which provides the equivalence of the following statements: (i) there exists a supermartingale numéraire portfolio; (ii) each dissected market, which is of a fixed dimension between dimensional jumps, has locally finite growth; (iii) there is no arbitrage of the first kind; (iv) there exists a local martingale deflator; (v) the market is viable. We also present the optional decomposition theorem, which characterizes a given nonnegative process as the wealth process of some investment‐consumption strategy. Furthermore, similar results still hold in an open market embedded in the entire market of stochastic dimension, where investors can only invest in a fixed number of large capitalization stocks. These results are developed in an equity market model where the price process is given by a piecewise continuous semimartingale of stochastic dimension. Without the continuity assumption on the price process, we present similar results but without explicit characterization of the numéraire portfolio.more » « less
-
Abstract An open market is a subset of a larger equity market, composed of a certain fixed number of top‐capitalization stocks. Though the number of stocks in the open market is fixed, their composition changes over time, as each company's rank by market capitalization fluctuates. When one is allowed to invest also in a money market, an open market resembles the entire “closed” equity market in the sense that the market viability (lack of arbitrage) is equivalent to the existence of a numéraire portfolio (which cannot be outperformed). When access to the money market is prohibited, the class of portfolios shrinks significantly in open markets; in such a setting, we discuss the Capital Asset Pricing Model, how to construct functionally generated portfolios, and the concept of universal portfolio.more » « less
An official website of the United States government
